Metode
simpleks merupakan salah satu teknik penyelesaian dalam program linier yang
digunakan sebagai teknik pengambilan keputusan dalam permasalahan
yang berhubungan dengan pengalokasian sumberdaya secara optimal.
Metode simpleks digunakan untuk mencari nilai optimal dari program
linier yang melibatkan banyak constraint (pembatas) dan banyak variabel (lebih
dari dua variabel). Penemuan metode ini merupakan lompatan besar dalam riset
operasi dan digunakan sebagai prosedur penyelesaian dari setiap
program computer.
Salah
satu teknik penentuan solusi optimal yang digunakan dalam pemrograman linier
adalah metode simpleks. Penentuan solusi optimal menggunakan metode
simpleks didasarkan pada teknik eleminasi Gauss Jordan. Penentuan solusi
optimal dilakukan dengan memeriksa titik ekstrim satu per satu dengan cara
perhitungan iteratif. Sehingga penentuan solusi optimal dengan simpleks
dilakukan tahap demi tahap yang disebut dengan iterasi. Iterasi ke-i hanya
tergantung dari iterasi sebelumnya (i-1).
Ada
beberapa istilah yang sangat sering digunakan dalam metode simpleks,
diantaranya yaitu :
1.Iterasi adalah tahapan perhitungan dimana nilai dalam
perhitungan itu tergantung dari nilai tabel sebelumnya.
2.Variabel non basis adalah variabel yang nilainya diatur menjadi nol pada sembarang iterasi. Dalam terminologi umum, jumlah variabel non basis selalu sama dengan derajat bebas dalam sistem persamaan.
3.Variabel basis merupakan variabel yang nilainya bukan nol pada sembarang iterasi. Pada solusi awal, variabel basis merupakan variabel slack (jika fungsi kendala merupakan pertidaksamaan ≤ ) atau variabel buatan (jika fungsi kendala menggunakan pertidaksamaan ≥ atau =). Secara umum, jumlah variabel basis selalu sama dengan jumlah fungsi pembatas (tanpa fungsi non negatif).
4. Solusi atau nilai kanan merupakan nilai sumber daya pembatas yang masih tersedia. Pada solusi awal, nilai kanan atau solusi sama dengan jumlah sumber daya pembatas awal yang ada, karena aktivitas belum dilaksanakan.
5. Variabel slack adalah variabel yang ditambahkan ke model matematik kendala untuk mengkonversikan pertidaksamaan ≤ menjadi persamaan (=). Penambahan variabel ini terjadi pada tahap inisialisasi. Pada solusi awal, variabel slack akan berfungsi sebagai variabel basis.
6. Variabel surplus adalah variabel yang dikurangkan dari model matematik kendala untuk mengkonversikan pertidaksamaan ≥ menjadi persamaan (=). Penambahan ini terjadi pada tahap inisialisasi. Pada solusi awal, variabel surplus tidak dapat berfungsi sebagai variabel basis.
7. Variabel buatan adalah variabel yang ditambahkan ke model matematik kendala dengan bentuk ≥ atau = untuk difungsikan sebagai variabel basis awal. Penambahan variabel ini terjadi pada tahap inisialisasi.Variabel ini harus bernilai 0 pada solusi optimal, karena kenyataannya variabel ini tidak ada. Variabel hanya ada di atas kertas.
8. Kolom pivot (kolom kerja) adalah kolom yang memuat variabel masuk. Koefisien pada kolom ini akn menjadi pembagi nilai kanan untuk menentukan baris pivot (baris kerja).
9. Baris pivot (baris kerja) adalah salah satu baris dari antara variabel basis yang memuat variabel keluar.
10. Elemen pivot (elemen kerja) adalah elemen yang terletak pada perpotongan kolom dan baris pivot. Elemen pivot akan menjadi dasar perhitungan untuk tabel simpleks berikutnya.
11. Variabel masuk adalah variabel yang terpilih untuk menjadi variabel basis pada iterasi berikutnya. Variabel masuk dipilih satu dari antara variabel non basis pada setiap iterasi. Variabel ini pada iterasi berikutnya akan bernilai positif.
12. Variabel keluar adalah variabel yang keluar dari variabel basis pada iterasi berikutnya dan digantikan oleh variabel masuk. Variabel keluar dipilih satu dari antara variabel basis pada setiap iiterasi. Variabel ini pada iterasi berikutnya akan bernilai nol.
2.Variabel non basis adalah variabel yang nilainya diatur menjadi nol pada sembarang iterasi. Dalam terminologi umum, jumlah variabel non basis selalu sama dengan derajat bebas dalam sistem persamaan.
3.Variabel basis merupakan variabel yang nilainya bukan nol pada sembarang iterasi. Pada solusi awal, variabel basis merupakan variabel slack (jika fungsi kendala merupakan pertidaksamaan ≤ ) atau variabel buatan (jika fungsi kendala menggunakan pertidaksamaan ≥ atau =). Secara umum, jumlah variabel basis selalu sama dengan jumlah fungsi pembatas (tanpa fungsi non negatif).
4. Solusi atau nilai kanan merupakan nilai sumber daya pembatas yang masih tersedia. Pada solusi awal, nilai kanan atau solusi sama dengan jumlah sumber daya pembatas awal yang ada, karena aktivitas belum dilaksanakan.
5. Variabel slack adalah variabel yang ditambahkan ke model matematik kendala untuk mengkonversikan pertidaksamaan ≤ menjadi persamaan (=). Penambahan variabel ini terjadi pada tahap inisialisasi. Pada solusi awal, variabel slack akan berfungsi sebagai variabel basis.
6. Variabel surplus adalah variabel yang dikurangkan dari model matematik kendala untuk mengkonversikan pertidaksamaan ≥ menjadi persamaan (=). Penambahan ini terjadi pada tahap inisialisasi. Pada solusi awal, variabel surplus tidak dapat berfungsi sebagai variabel basis.
7. Variabel buatan adalah variabel yang ditambahkan ke model matematik kendala dengan bentuk ≥ atau = untuk difungsikan sebagai variabel basis awal. Penambahan variabel ini terjadi pada tahap inisialisasi.Variabel ini harus bernilai 0 pada solusi optimal, karena kenyataannya variabel ini tidak ada. Variabel hanya ada di atas kertas.
8. Kolom pivot (kolom kerja) adalah kolom yang memuat variabel masuk. Koefisien pada kolom ini akn menjadi pembagi nilai kanan untuk menentukan baris pivot (baris kerja).
9. Baris pivot (baris kerja) adalah salah satu baris dari antara variabel basis yang memuat variabel keluar.
10. Elemen pivot (elemen kerja) adalah elemen yang terletak pada perpotongan kolom dan baris pivot. Elemen pivot akan menjadi dasar perhitungan untuk tabel simpleks berikutnya.
11. Variabel masuk adalah variabel yang terpilih untuk menjadi variabel basis pada iterasi berikutnya. Variabel masuk dipilih satu dari antara variabel non basis pada setiap iterasi. Variabel ini pada iterasi berikutnya akan bernilai positif.
12. Variabel keluar adalah variabel yang keluar dari variabel basis pada iterasi berikutnya dan digantikan oleh variabel masuk. Variabel keluar dipilih satu dari antara variabel basis pada setiap iiterasi. Variabel ini pada iterasi berikutnya akan bernilai nol.
BENTUK
BAKU
Sebelum
melakukan perhitungan iteratif untuk menentukan solusi optimal, pertama sekali
bentuk umum pemrograman linier dirubah ke dalam bentuk baku terlebih dahulu.
Bentuk baku dalam metode simpleks tidak hanya mengubah persamaan kendala ke
dalam bentuk sama dengan, tetapi setiap fungsi kendala harus diwakili oleh satu
variabel basis awal. Variabel basis awal menunjukkan status sumber daya pada
kondisi sebelum ada aktivitas yang dilakukan. Dengan kata lain, variabel
keputusan semuanya masih bernilai nol. Dengan demikian, meskipun fungsi kendala
pada bentuk umum pemrograman linier sudah dalam bentuk persamaan, fungsi
kendala tersebut masih harus tetap berubah.
Ada
beberapa hal yang harus diperhatikan dalam membuat bentuk baku, yaitu :
1.
Fungsi
kendala dengan pertidaksamaan ≤ dalam bentuk umum, dirubah menjadi persamaan
(=) dengan menambahkan satu variabel slack.
2.
Fungsi
kendala dengan pertidaksamaan ≥ dalam bentuk umum, dirubah menjadi persamaan
(=) dengan mengurangkan satu variabel surplus.
3.
Fungsi
kendala dengan persamaan dalam benttuk umum,ditambahkan satu artificial
variabel (variabel buatan).
Contoh
Soal :
Selesaikan
kasus berikut ini menggunakan metode simpleks :
Maksimum
z = 8 x1 + 9 x2 + 4x3
Kendala
:
x1 +
x2 + 2x3 ≤ 2
2x1 +
3x2 + 4x3 ≤ 3
7x1 +
6x2 + 2x3 ≤ 8
x1,x2,x3 ≥
0
Penyelesaian
:
Bentuk
bakunya adalah :
Maksimum
z = 8 x1 + 9 x2 + 4x3 + 0s1 +
0s2 + 0s3 atau
z - 8 x1 -
9 x2 - 4x3 + 0s1 + 0s2 +
0s3 = 0
Kendala
:
x1 +
x2 + 2x3 + s1 = 2
2x1 +
3x2 + 4x3 + s2 = 3
7x1 +
6x2 + 2x3 + s3 = 8
x1,x2,x3 ,s1 ,
s2 , s3 ≥ 0
Solusi
/ table awal simpleks :
VB
|
X1
|
X2
|
X3
|
S1
|
S2
|
S3
|
NK
|
Rasio
|
Z
|
-8
|
-9
|
-4
|
0
|
0
|
0
|
0
|
|
S1
|
1
|
1
|
2
|
1
|
0
|
0
|
2
|
|
S2
|
2
|
3
|
4
|
0
|
1
|
0
|
3
|
|
S3
|
7
|
6
|
2
|
0
|
0
|
1
|
8
|
Karena
nilai negative terbesar ada pada kolom X2, maka kolom X2 adalah
kolom pivot dan X2 adalah variabel masuk. Rasio pembagian nilai
kanan dengan kolom pivot terkecil adalah 1 bersesuaian dengan
baris s2, maka baris s2 adalah baris pivot dan s2 adalah
varisbel keluar. Elemen pivot adalah 3.
VB
|
X1
|
X2
|
X3
|
S1
|
S2
|
S3
|
NK
|
Rasio
|
Z
|
-8
|
-9
|
-4
|
0
|
0
|
0
|
0
|
|
S1
|
1
|
1
|
2
|
1
|
0
|
0
|
2
|
2
|
S2
|
2
|
3
|
4
|
0
|
1
|
0
|
3
|
1
|
S3
|
7
|
6
|
2
|
0
|
0
|
1
|
8
|
8/6
|
Iterasi 1
Nilai pertama yang kita miliki adalah nilai baris
pivot baru (baris x2). Semua nilai pada baris s2 pada
tabel solusi awal dibagi dengan 3 (elemen pivot).
VB
|
X1
|
X2
|
X3
|
S1
|
S2
|
S3
|
NK
|
Rasio
|
Z
|
||||||||
S1
|
||||||||
x2
|
2/3
|
1
|
4/3
|
0
|
1/3
|
0
|
1
|
|
S3
|
Perhitungan nilai barisnya :
Baris z :
-8
-9
-4
0
0
0 0
-9 ( 2/3
1
4/3
0 1/3
0 1
) -
-2 0
8 0
3 0
9
Baris s1 :
1
1
2
1
0
0 2
1
(2/3
1
4/3
0
1/3 0
1 ) -
1/3
0
2/3
1
-1/3
0 1
Baris s3 :
7
6
2
0
0
1 8
6 (
2/3
1 4/3
0
1/3
0 1 ) -
3
0
-6 0
-2
1 2
Maka tabel iterasi 1 ditunjukkan tabel di bawah.
Selanjutnya kita periksa apakah tabel sudah optimal atau belum. Karena nilai
baris z di bawah variabel x1 masih negatif, maka tabel belum
optimal. Kolom dan baris pivotnya ditandai pada tabel di bawah ini
:
VB
|
X1
|
X2
|
X3
|
S1
|
S2
|
S3
|
NK
|
Rasio
|
Z
|
-2
|
0
|
8
|
0
|
3
|
0
|
9
|
-
|
S1
|
1/3
|
0
|
2/3
|
1
|
-1/3
|
0
|
1
|
3
|
X2
|
2/3
|
1
|
4/3
|
0
|
1/3
|
0
|
1
|
3/2
|
S3
|
3
|
0
|
-6
|
0
|
-2
|
1
|
2
|
2/3
|
Variabel masuk dengan demikian adalah X1 dan
variabel keluar adalah S3 .Hasil
perhitungan iterasi ke 2 adalah sebagai berikut :
Iterasi 2 :
VB
|
X1
|
X2
|
X3
|
S1
|
S2
|
S3
|
NK
|
Rasio
|
Z
|
0
|
0
|
4
|
0
|
5/3
|
2/3
|
31/3
|
|
S1
|
0
|
0
|
4/3
|
1
|
-1/9
|
-1/9
|
7/9
|
|
X2
|
0
|
1
|
8/3
|
0
|
7/9
|
-2/9
|
5/9
|
|
X1
|
1
|
0
|
-2
|
0
|
-2/3
|
1/3
|
2/3
|
Tabel
sudah optimal, sehingga perhitungan iterasi dihentikan !
Perhitungan dalam simpleks menuntut ketelitian
tinggi, khususnya jika angka yang digunakan adalah pecahan. Pembulatan
harus diperhatikan dengan baik. Disarankan jangan menggunakan bentuk bilangan
desimal, akan lebih teliti jika menggunakan bilangan pecahan. Pembulatan dapat
menyebabkan iterasi lebih panjang atau bahkan tidak selesai karena
ketidaktelitian dalam melakukan pembulatan.
Perhitungan iteratif dalam simpleks pada dasarnya
merupakan pemeriksaan satu per satu titik-titik ekstrim layak pada daerah penyelesaian.
Pemeriksaan dimulai dari kondisi nol (dimana semua aktivitas/variabel keputusan
bernilai nol). Jika titik ekstrim berjumlah n, kemungkinan terburuknya kita
akan melakukan perhitungan iteratif sebanyak n kali.
Ok.. Terima Kasih atas Postingnya !!!.....
BalasHapus